

- Projecto (Nacional) SusCity
 - Soluções de reabilitação no âmbiente construído urbano sector residencial
- Projeto (Europeu) RePublic_ZEB
 - Soluções de reabilitação para edifícios publicos

sumário

PROJECTO/WP CONSÓRCIO

Universidade de Coimbra

With the support of

SusCity: Urban data driven models for creative and resourceful urban transitions

Objectivo:

- Habilitar e demonstrar um conjunto de novos serviços que exploram oportunidades económicas associadas com a transição para sistemas urbanos sustentáveis.
- Caracterizar fluxos e stocks de recursos no sector residencial (escala do bairro)
 - Recolher e organizar informação
 - Desenvolver arquétipos de edifícios
- Modelar fluxos urbanos
- Desenvolver uma ferramenta 3D interativa para analisar, visualizar e comunicar os fluxos e stocks de recursos no sector residencial

SusCity

WP

1

Analítica urbana

WP

2

Serviço de informação e plataforma de processamento de dados

WP

3

Soluções para edifícios inteligentes

WP

4

Soluções de mobilidade inovadoras

WP

5

Serviços baseados em redes inteligentes

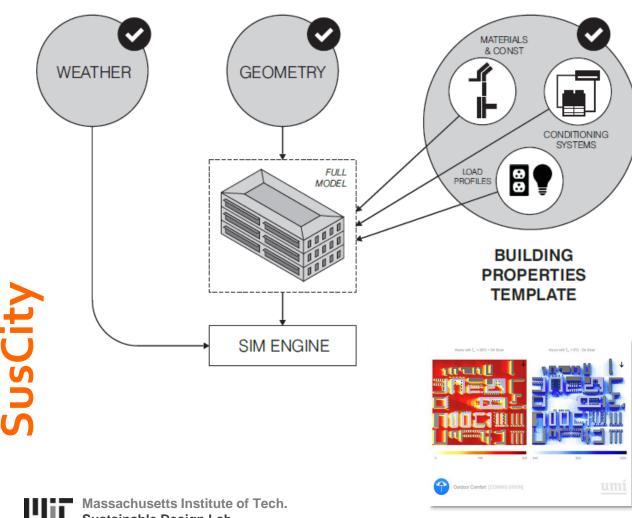
WP

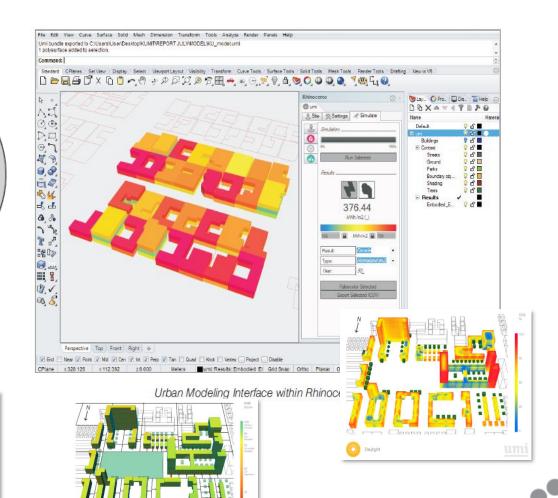
6

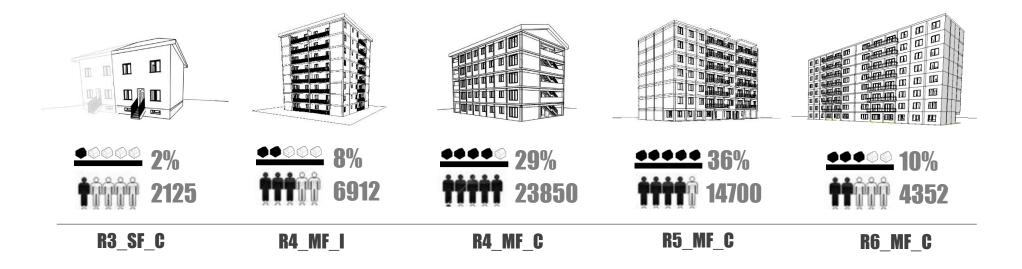
Laboratório de competividade urbana

SusCity

ÁREA - TEST BED






Umi - Configuração do modelo

ARQUÉTIPOS DE EDIFICIOS

BIM

Building Information Modeling



MODEL INPUTS

CATEGORY	FAMILY	Material	Thick (m)	R (m2.K/W)	k (W/mK)	c _p (J/kg.K)	ρ (kg/m3)	Therm.ε	Solar α	Visual α
	Rectangular Footing	Concrete	0,5	0,025	2	840-1040	2300-2400	0,92-0,97	-	-
SuperStructure	Rectangular Beams	Concrete	0,4	0,025	2	840-1041	2300-2401	0,92-0,98	-	-
	Rectangular Columns	Concrete	0,3	0,025	2	840-1042	2300-2402	0,92-0,99	-	-

CATEGORY	FAMILY	Material	Thick (m)	R (m2.K/W)	k (W/mK)	c _p (J/kg.K)	ρ (kg/m3)	Therm. ε	Solar α	Visual α
		Ceramic tiles	0,02	0,015	1,3	745	230	00	-	-
	Interior Floor	Reinforced Concrete slab	0,05	0,025	2	840-1040	2300-2400	0,92-0,97	-	-
		Hollow Brick Blocks	0,06	0,146	0,41	920-1000	1000-1200	0,93	-	-
		Finishing - plaster	0,03	0,038	0,8		<1600	0,87	-	-
Floor	Ground Floor	Ceramic tiles	0,02	0,015	1,3	745	230	00	-	-
		Reinforced Concrete Slab	0,15	0,075	2	840-1040	2300-2400	0,92-0,97	-	-
		Damp-Proofing	0,008	0,007	1,15	920	<2100		-	-
		Poor Concrete	0,1	0,061	1,65	840-1040	2000-2300	0,92-0,97	-	-
		Gravel	0,1	0,050	2	-	1700-2200		-	-

CATEGORY	FAMILY	Material	Thick (m)	R (m2.K/W)	k (W/mK)	c _p (J/kg.K)	ρ (kg/m3)	Therm.ε	Solar α	Visual α
		Finishing - cement coating	0,02	0,025	0,8	1,046	1600	0,87	0,4	-
	Exterior Walls	Hollow Brick Wall	0,15	0,366	0,41	920-1000	20-1000 1000-1200 (-	-
		Air Gap - cavity no insulation	0,03	0,18	0,025	1000	1,23			
Walls		Hollow Brick Wall	0,11	0,268	0,41	920-1000	1000-1200	0,93	-	-
		Stucco	0,02	0,025	0,8		<1600	0,87	-	-
		Stucco	0,02	0,025	0,8		<1600	0,87	-	-
	Interior Walls	Hollow Brick	0,15	0,366	0,41	920-1000	1000-1200	0,93	-	-
		Stucco	0,02	0,025	0,8		<1600	0,87	-	-

CATEGORY	FAMILY	Material	Thick (m)	R (m2.K/W)	k (W/mK)	c _p (J/kg.K)	ρ (kg/m3)	Therm.ε	Solar α	Visual α
		Clay Ceramic Tiles	0,03	0,018	1,65	840-1040	2000-2300	0,92-0,97		
		Damp-Proofing	0,008	0,007	1,15	920	<2100		-	-
	Claused Darek	Poor Concrete	0,04	0,024	1,65	840-1040	2000-2300	0,92-0,97	-	-
Roof	Sloped Roof	Reinforced Concrete slab	0,05	0,025	2	840-1040	2300-2400	0,92-0,97	-	-
		Hollow Brick Blocks	0,06	0,146	0,41	920-1000	1000-1200	0,93	-	-
		Stucco	0,03	0,038	0,8		<1600	0,87	-	-

CATEGORY	FAMILY	Material	Frame Type	Solar Factor*	Glass Transmittance*	Color	Break(Y/N)	AreaRatio (%)	Operable (Y/N)
Window	Aluminium Window	Simple Glazing (4mm)	Aluminium Frame	0,88	0,9	no color	N	30	Υ

SusCity - WP3 - Construção de soluções inteligentes

SusCity - WP3 - Construção de soluções inteligentes

Monitorização de edifícios reais

R4_MF_SL_C T3, Olivais Sul, 1971

R4_MF_SL_C T2, Olivais Sul, 1967

R3_SF_SL_C T2, Encarnação, 1947

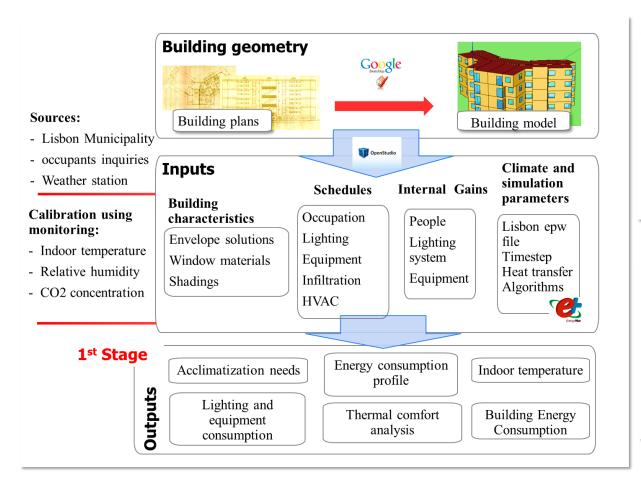
R6_MF_FL_C T3, Parque das Nações, 2006

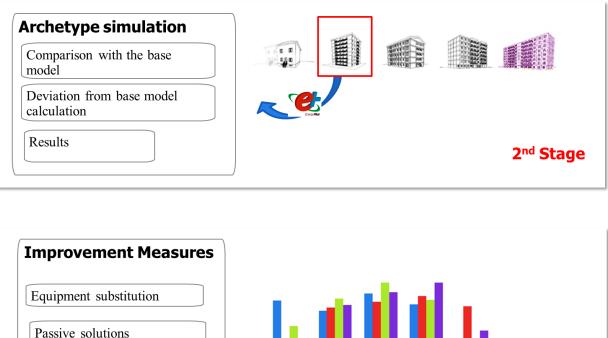
R5_MF_FL_C T4, Parque das Nações, 1996

R5_MF_FL_C T4, Parque das Nações, 2000

R5_MF_FL_C T2, Parque das Nações, 2005

SusCity - WP3 - Construção de soluções inteligentes


Monitorização de edifícios reais


Ferramentas de monitorização e dados de registro de equipamento

		Campanha de Monitorizaçã	ăо		
F	Período de Monitorização	Parâmetros de Monitorização	Ferramentos/Eq	uipamentos	
		Comportamento Utilizadores	Inquéri	tos	
		Temperatura	Concerns	НОВО	
		Humidade Relativa	Sensores	Testo	
	Sazonal:	CO ₂ /Rph	Sensores de Qualidade do Ar Interior Chauvin Arnoux		
	Inverno/Verão	Consumo Eléctrico	Medidores de Cor Arnou		
		Condições Exteriores:			
	Diário	Temperatura	Sensores de Temperatura		
		Humidade Relativa	Sensores de F	lumidade	
		Radiação	Piranóm	etro	
		Velocidade do Vento Direcção do Vento	Cata-Ve	nto Laura Aelenei	

Calibração dos arquétipos com base no estudo de casos reais e dados de monitorização

Improvement measures analysis

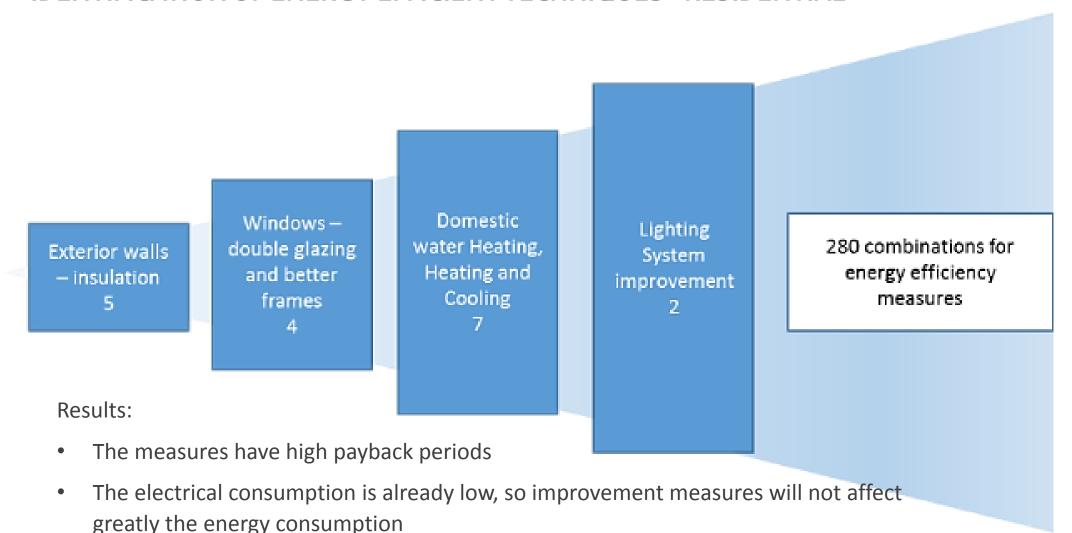
Changing behavior

3rd Stage

SusCity - WP3 - Construção de soluções inteligentes

MEDIDAS APLICADAS NA ENVOLVENTE

- Aplicação do isol
- Aplicação do isolamento térmico nas coberturas
- Aplicação do isolamento entre os pisos
 - Substituição das janelas


MEDIDAS APLICADAS AOS SISTEMAS

- Aumento da eficiência energética da produção de sistemas AQS
- Aumento da eficiência dos sistemas de aquecimento e arrefecimento
 - Utilização de energia solar para a produção de eletricidade e AQS
- Aumento de eficiência dos sistemas de iluminação
 - Gestão inteligente de sistemas

SusCity - WP3 - Construção de soluções inteligentes

IDENTIFICATION OF ENERGY EFFICIENT TECHNIQUES - RESIDENTIAL

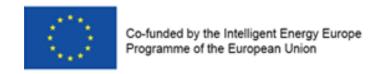
• The measure with lower payback periods relies on the lighting replacement

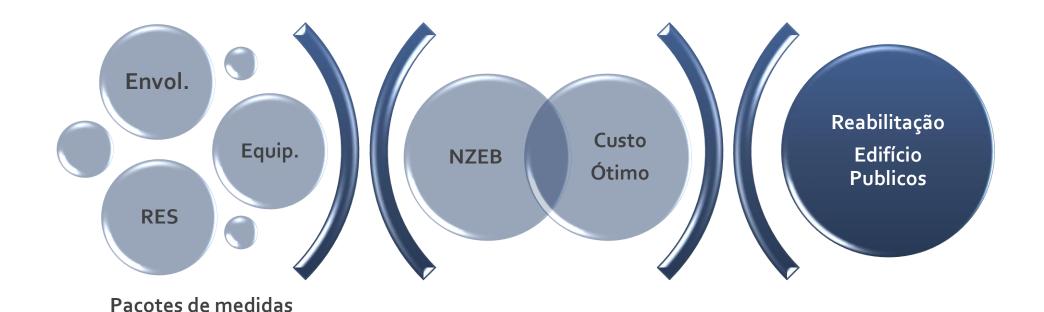
REfurbishment of the PUBLIC building stock towards nZEB

March 2014 – October 2016

Coordination: CTI (Italian Thermotechnical Committee Energy and Environment)

Partners





Alvo/Target

Metodologias

de EE

DIRECTIVE 2010/31/EU OF THE COUNCIL

of 2 12 2010 on the energy performance of build (recast)

THE EUROPEAN PARLIAMENT AND THE COUNCE OF THE EUROPEAN UNION.

Having regard to the Treaty on the Functioning of the Europe Union, and in particular Article 194(2) thereof,

Having regard to the proposal from the European Commission

Having regard to the opinion of the European Economic and Social Committee $({}^{1})$,

Having regard to the opinion of the Committee of the Regions (*),

Acting in accordance with the ordinary legizlative procedure (*),

Wherea

- (1) Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings (*) has been amended (*). Since further substantive amendments are to be made, it should be recent in the inserted of clarity.
- (2) An efficient, prudent, rational and zuzzalnable utilization of energy applies, inser alls, to oil products, natural gaz and zolid fuels, which are essential sources of energy, but also the leading sources of carbon dioxide emissions.
- (1) Buildings account for 40 N of socal energy consumption in the Union. The sector it expanding, which is bound to increase its energy consumption. Therefore, reduction of energy consumption and the use of energy from renewable sourcest in the buildings sector constitute important measures needed to reduce the Union's energy desendancy and resenbouse gaz emissions.
- O C 277, 17.11.2005, p. 75.
- (f) OJ C 300, 25.2.3005, p. 41.
 (f) Patition of the Surveyan Parliament of 25 April 3005 (not yighthinked in the Official Journal), position of the Council at fit making of 14 April 3010 (not yet published in the Official Journal position of the Surveyan Parliament of 15 May 1010 (not y

published in the Official jo: (*) OI I. 1, 4.1.2003, p. 65. Together with an energy of a nargy from renewable sources, meaning to the policy of energy committee to the control of the con

- Management of energy demand is an important tool enabling the Union to influence the global energy market and hence the security of energy supply in the medium and long serm.
- The Impura Connell of March 2007 emphasized denead to increase energy efficiency in the Moint on as to achieve the objective of reducing by 20% the Union's energy examination of 100 and called for a theoremy in the control of the Connell of the Connell Action plan for energy efficiency realizing the potential. That action plan identified the significant powerful of excessferiors being raising in the Moilling assent. Bit Ecosyana Parliement, in his resolution of 31 journary 100 hourses 200,191 (E. ord has called at various times, on the Instrument of Connell of the Connell of 23 April 2009 on the Section Connell of the Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the effort of Mornber Connell of 23 April 2009 on the connell of 23 April 2009 on the promotion of the union of energy efficiency in the building account of every effort from measurable account of the 20 April 2009 on the from measurable accounting for 20 % of scall Union energy communion to every effort.

(*) OLL 140, 5,6,2005, p. 136.

Artigo 9º Edifícios com necessidades quase nulas de energia

- > O mais tardar em 31 de Dezembro de 2020, todos os edifícios novos sejam edifícios com necessidades quase nulas de energia; e;
- Após 31 de Dezembro de 2018, os edifícios novos ocupados e detidos por autoridades públicas sejam edifícios com necessidades quase nulas de energia.
- Elaborar planos nacionais para aumentar o número de edifícios nZEB seguindo o exemplo do sector público,
 - Objectivos intermédios para melhorar o desempenho energético dos edifícios novos, até 2015,
 - Descrição pormenorizada da definição nZEB/NZEB (incluíndo a renovação dos edifícios em direção a NZEB)

DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.

on the energy partyrmines of buildings

THE EUROPEAN PARLIAMENT AND THE COUNCE. OF THE EUROPEAN UNION.

Having regard to the Treaty on the Functioning of the European Union, and in particular Article 194(2) thereof,

Having regard to the proposal from the European Commission,

Having regard to the opinion of the European Economic and Social Committee (1), $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2$

Having regard to the opinion of the Committee of the Regions (³),

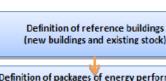
Acting in accordance with the ordinary legislative procedure (*),

Wherea

- (1) Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of building; (*) has been animoded (*). Since further substantive animofinants are so be made, it should be recart in the interests of clarity.
- (2) An efficient, prudent, rational and zuzzalnable utilization of energy appliar, inter alia, to oil products, natural gaz and zolid fiels, which are seantial sources of energy, but also the leading sources of carbon dioxide emissions.
- (1) Buildings account for 40 % of total energy contamption in the Union. The sector is expanding, which is bound to increase its energy contamption. Therefore, whetchen of energy contamption and the use of energy from renewable sources in the buildings accord contains important measures needed to reduce the Union's energy dependency and greenhouse gas emissions.
- (4) Of C 277, 17.11.2009, p. 75. (5) Of C 200, 25.6.2009, p. 41.
- (7) Of C. 200, 253-2005; p. 41.
 (8) Patition of the European Parliament of 23 April 2009 (not published in the Official Journal), position of the Council at mading of 14 April 2010 (not yet published in the Official Journ position of the European Parliament of 12 May 2010 (not published in the Official Journal).

Together the lowested use of energy from researchite searce, meaning the first energy consumption in the Union would are of thinns to emply with the Kyess Prescuel to the whited Nucleon Framework Convention on Climass Change (MNCCC), and so honour both its long sens commitment to maintain the global superature the below '2'C, and its commitment to reduce, by 3020, overall guarahous gas entitients by a takes 10° k below '15°C and its great and the state of the sense of

- (4) Management of energy demand is an important tool enabling the Union to influence the global energy market and hence the security of energy supply in the medium and long term.
- The European Centrell of March. 2007 emphasized the need to increase energy efficiency in the Utilen to as to a chieve the objective of reducing by 20% the Union's energy concentration by 1000 and called for a thorough and rapid implementation of the priorities. The article of the control of the property of the Control of the Property of the Control of the Property of the Control of the European Parliament, in its resolution of 31 January 2005, called for the strengthness of the Business of the European Parliament, in its resolution of 31 Instance 2005, called for the strengthness of the protection of the European Parliament, in its resolution of 31 Instance 2005, called for the strengthness of the Parliament of the European Parliament, in its resolution of 31 Instance 2005, called for the strengthness of the European Parliament, in its resolution of 31 Instance 2005, called for the 2005 energy efficiency target in 2005 to be made binding. Moreover, Declarion No 405/2009/EC of the European Control of the 2005 energy efficiency in the building according to the promotion of the time of which except efficiency in the building according to the promotion of the time of energy from research and of the Council of 31 April 2009 on the promotion of the time of energy from research from the council of 20 April 2009 on the promotion of the time of energy from research from the council of 20 April 2009 on the promotion of the time of energy from the promotion of the energy from the energy


(*) OJ 1. 140, 5.6.2009, p. 136

Artigo 5°

Cálculo dos níveis óptimos de rentabilidade dos requisitos mínimos de desempenho energético

- A Comissão estabelece uma metodologia comparativa para o cálculo dos níveis óptimos de rentabilidade dos requisitos mínimos de desempenho energético dos edifícios e dos componentes de edifícios.
- ➤ Os Estados-Membros devem calcular os níveis óptimos de rentabilidade dos requisitos mínimos de desempenho energético e parâmetros relevantes, como as condições climáticas e comparar os resultados deste cálculo com os requisitos mínimos de desempenho energético em vigor.

Definition of packages of energy performance measures (current requirements and beyond incl. nZEB)

Framework conditions:

investment costs, interest rates, energy price

Calculation of financial performance for set of packages

(Net Present Value)

Overview of financial performance of packages of

measures

k conditions_

Update/ reportingcycle

Framework conditions: climate, geometries, system performance etc.

BUILDINGS

REQUISITOS PARA A METODOLOGIA

- definir e selecionar edifícios representativos de cada tipologia e região do país, incluir as condições de clima interior e exterior, geometrias etc. "edifícios de referência";
- estimar a energia fornecida e a energia primária para o edifícios de referência selecionado;
- determinar o ciclo de vida económico para o edifício de referência custos de investimento, energia, mão de obra, manutenção e de eliminação para várias medidas de eficiência energética, e de fontes de energia renováveis (pacotes)
- ☐ traçar a curva de custo(s) e determinar o nível ótimo

Distance to target (new buildings, 2021)

Figure 4: Beneficial areas in relation to cost optimum and distance to target (example only)

Source: BPIE, 2010

WP2 Analysis of the public building stock and definition of reference buildings (Lead: BSERC)

WP3 Assessment of the status quo and analysis of opportunities for refurbishing public buildings towards nZEB

(Lead: BME)

WP4 Costs/benefits analysis of the "packages of measures" for the refurbishment towards nZEB (Lead: POLITO)

WP5 Strategies and guidelines towards nZEBs (Lead: LNEG)

WP6 Communication and dissemination (Lead: BRE)

Objetivos

bjetivos strate P <u>G</u> COS

"Pacotes de medidas" adequado para a renovação dos edifícios públicos

Apoiar e simplificar a ligação entre construtores/ proprietários de edifícios públicos e ESCOs

Superar a falta de experiência prática e o desconhecimento das novas e inteligente tecnologias de construção

Concordância dos "pacotes de medidas" como uma oportunidade de investimento

fiável e de baixo risco

íficos

pec

S

Ш

S

bjetive

WP2 – Classificação do parque edificado público

Educacional

Escolas Universidades Liceus

Edifícios para prática desportiva

Hotéis e restaurantes

Hotéis

Alojamentos de curta duração

Serviços de saúde

Hospitais e outros centros de saúde

Edifícios Públicos (EUROSTAT)

Outros tipos de edifícios consumidores de energia

Aeroportos civis e militares Estações ferroviárias e de camionetas, porto

Cinemas, salas de concertos, óperas, teatros

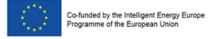
Superfícies comerciais

Residenciais



WP2 – Análise do parque edificado público - Método de seleção

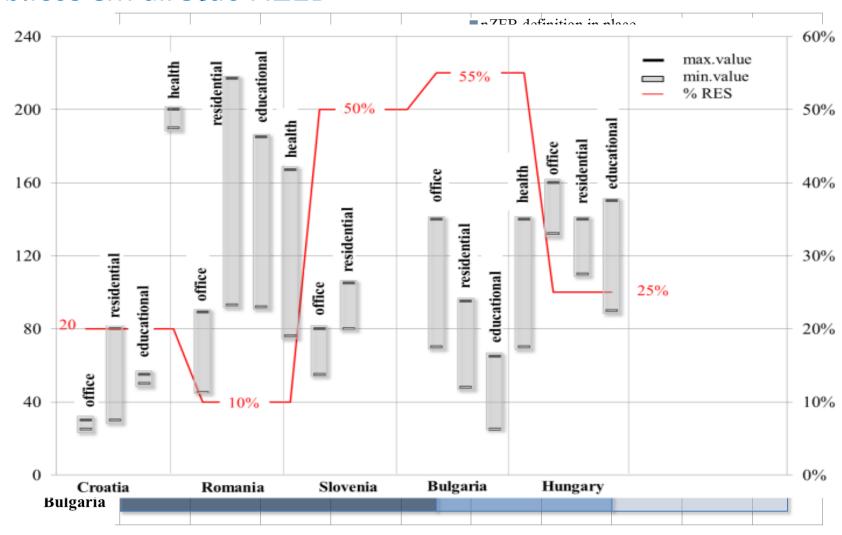
Selecção das Categorias de Edifícios


Os seguintes critérios foram aplicados para a escolha de categorias representativas:

- o Área condicionada do edifício, m²;
- o Energia especifica final e primária consumida, kWh/m².ano;
- o Quantidade de equivalente de emissão de CO₂ do consumo específico de energia, kg/m².ano.

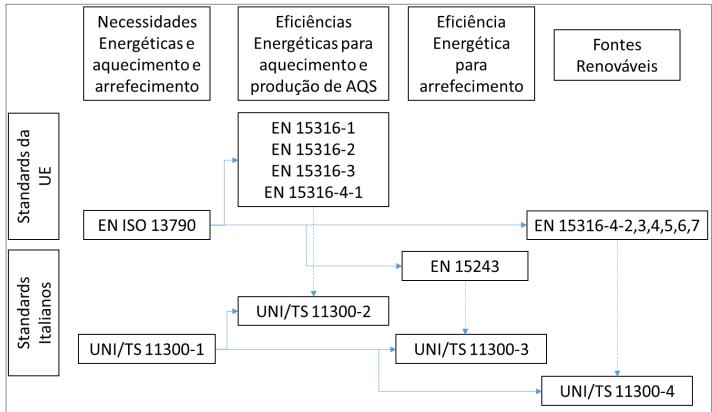
Seleção dos Edifícios de Referência

Os seguintes critérios foram aplicados:

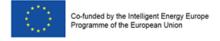

- o Área total e condicionada de pavimento;
- o Idade do edifício;
- o Materiais de construção e correspondente propriedades térmicas da envolvente do edifício;
- o Horários de utilização;
- o Sistemas técnicos/instalações para a manutenção do ambiente construído;
 - Padrões operacionais;
 - Tipos de energia utilizadas para aquecimento.

WP3 – Avaliação do status quo e análise de oportunidades para a reabilitação de edifícios públicos em direcão NZEB

WP4 – Modelação dos edifícios – Folha de Cálculo *POLITO*

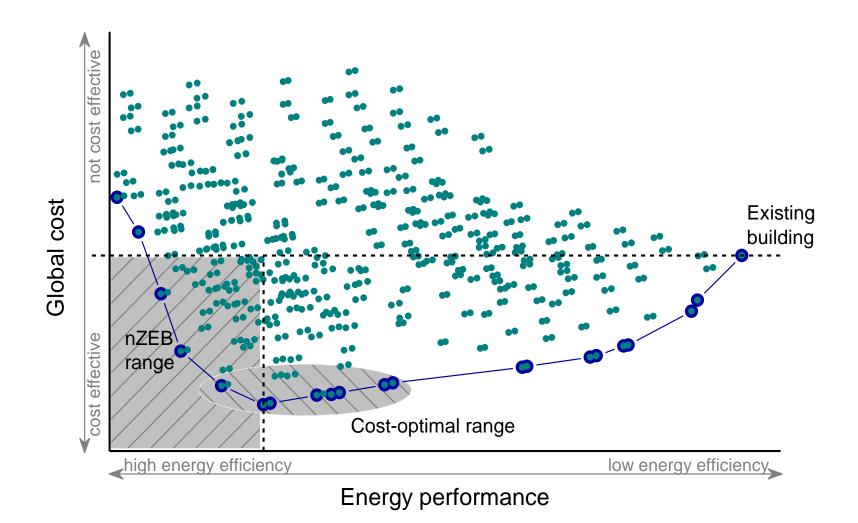


Permite avaliar:


- As necessidade energéticas para:
 - Aquecimento/Arrefecimento;
 - Produção de AQS;
 - Ventilação;
 - Iluminação.
- A demanda de energia para cada tipo de energia de cada necessidade energética;
- O valor de cada componente de energia primária:
 - Não-renovável;
 - Renovável;
 - Total.
- O índice de energia renovável, RER;

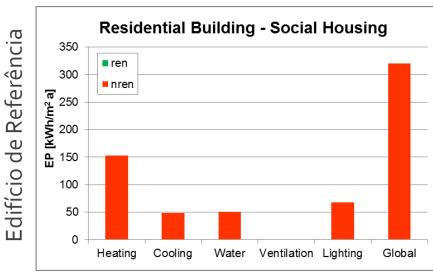
A ferramenta leva em conta a transposição italiana das normas da UE.

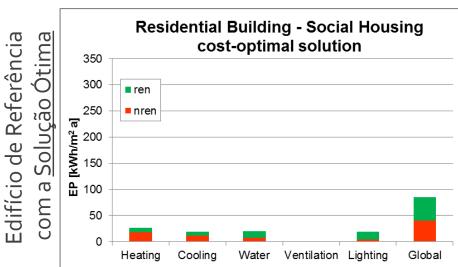
Método de cálculo quási-estável, baseado nas condições mensais.

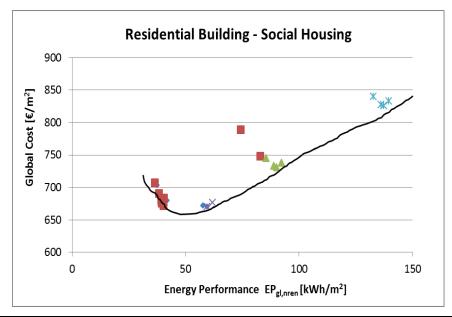


Sistemas técnicos para aquecimento, arrefecimento e produção de AQS subdivididos em subsistemas: emissão, controlo, distribuição, armazenamento (se possível) e geração).

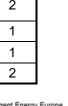
Common criteria and principles for public building nZEB definition in south and east European countries



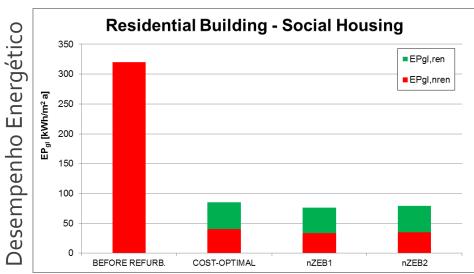


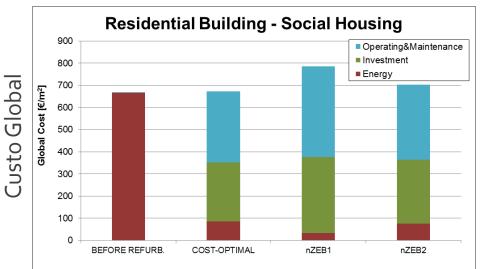


WP4 – Resultados modelação: Residencial



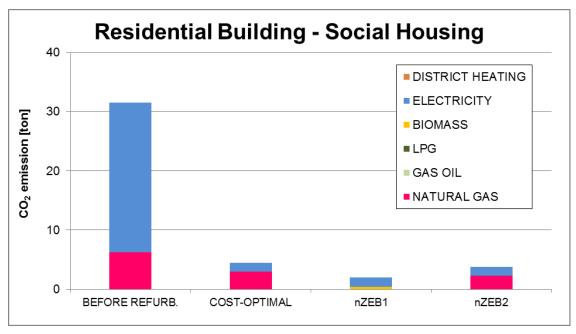
N.º	Medida de Eficiência Energética (MEE)	Simbolo	Edifício de Referência	Edificio Solução Ótima	
	modida do Enordiola Enorgonida (MEE)		Valor	Valor	N.º MEE
1	Isolamento térmico pelo exterior, Paredes	Up	1,76	0,4	2
3	Isolamento térmico, Cobertura	Ur	2,8	0,4	1
4	Isolamento térmico, Pavimento	Uf	2,1	0,7	1
5	Vão envidraçado com U melhorado	Uw	5,2	2,8	1
6	Sombreamento solar	τs		1	1
10	Sistema combinado de produção de AQS e aquecimento	COP		1,1	2
12	Paineis solar térmicos	m ²		32	1
13	Sistema fotovoltaico	kWp		4	1
16	Densidade de potência de iluminação	PN	9	1,28	2



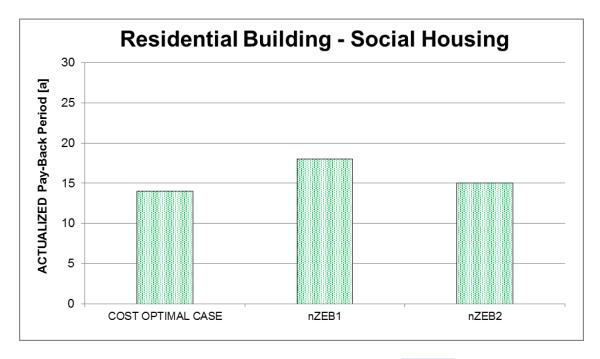


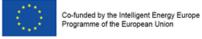
Laura Aelenei e Ana Ferreira

WP4 – Resultados modelação: Residencial

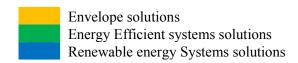

N.º	Medida de Eficiência Energética	Simbolo	Edifício de Referência		nZEB_1
	(MEE)		Valor	Valor	Tecnologia
1	Isolamento térmico pelo exterior, Paredes	Up	1,76	0,2	12 cm EPS
3	Isolamento térmico, Cobertura	Ur	2,8	0,3	10 cm EPS
4	Isolamento térmico, Pavimento	Uf	2,1	0,4	10 cm EPS
5	Vão envidraçado com U melhorado	Uw	5,1	2,1	Vidro duplo, caixilho com corte térmico
6	Sombreamento solar	-		int	Sombreamento pelo interior
10	Sistema combinado de produção de AQS e aquecimento	COP		0,83	Caldeira a biomassa
12	Painéis solar térmicos	m ²		32	Plano
13	Sistema Fotovoltaico	kWp		4	Monocristalino
16	Sistema de Iluminação	PN	10	1,28	LED

N.º	Medida de Eficiência Energética	Simbolo	Edifício de Referência	nZEB_2		
	(MEE)		Valor	Valor	Tecnologia	
1	Isolamento térmico pelo exterior, Paredes	Up	1,76	0,2	12 cm EPS	
3	Isolamento térmico, Cobertura	Ur	2,8	0,3	10 cm EPS	
4	Isolamento térmico, Pavimento	Uf	2,1	0,4	10 cm EPS	
5	Vão envidraçado com U melhorado	Uw	5,1	2,1	Vidro duplo, caixilho com corte térmico	
6	Sombreamento solar	-		int	Sombreamento pelo interior	
10	Sistema combinado de produção de AQS e aquecimento	COP		1,1	Caldeira a gás natural	
12	Painéis solar térmicos	m²		32	Plano	
13	Sistema Fotovoltaico	kW₽		4	Monocristalino	
16	Sistema de Iluminação	PN	10	1,28	LED	

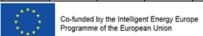

WP4 – Resultados modelação: Residencial



Emissões de CO₂



Período de Retorno



Matrix

	M1-1	Roof – External insulation (25-34 cm EPS)
M1	M1-2	Roof – External insulation (15-22 cm XPS)
Wall insulation	M1-3	Roof – External insulation (6-10 cm XPS)
	M1-4	Wall – External insulation (20 -22 cm EPS)
	M1-5	Wall – External insulation (12-15 cm EPS)
	M1-6	Wall – External insulation (3-9 cm EPS)
	M1-7	Wall – External insulation (30cm EPS)
M2	M2-1	Window – Triple glass low-e filled with gas
Windows	M2-2	Window in PVC – Triple glass low-e
	M2-3	Window in PVC – Double glass
	M2-4	Window in aluminum – Double glass, low-e
M3	M3-1	External movable shadings
shading	M3-2	External fixed shadings
M4	M4-1	Air source heat pump
Energy Efficient	M4-2	Ground or water source heat pump
Systems	M4-3	High efficient chiller
	M4-4	Mechanical ventilation
	M4-5	Heat recovery system
	M4-6	Load management
M5	M5-1	LED
Lighting	M5-2	Linear fluorescent lamp T5, T8
M6	M6-1	Solar Thermal systems
RES	M6-2	Photovoltaic system (monocrystalline, polycrystalline)
	M6-3	Biomass boiler
M7	M7	District heating

		O	ffice			Schools	i		Hospital	ls	Residential	
	$\mathbf{OF}_{-}\mathbf{IT}$	OF_PT	OF_GR	OF_HU	SC_IT	SC_BG	SC_RO	HP_BG	HP_ES	HP_SV	RES_SL	RES_HU
										M	1-1	
	M	4-1		M	4-1					M4-1		
							M	6-1				
	M1-2					M1-2						M1-2
			M4-2			M4-2						
			M6-2		I		M6-2		M6-2			M6-2
		M1-3	M1-3					M1-3				
									M4-3		M4-3	
											M	[6-3
				M1-4								M1-4
					M	4-4		M4-4			M4-4	
	M1-5					M1-5						
	M4-5						M4-5					
	3.54.6	N	<u>11-6</u>					M1-6				<u> </u>
	M4-6							M4-6		M	1-7	
			M5-1				M	5-1		IVI	1-/	
			WIJ-1	M2-1			1V1	.5-1		М	2-1	
	M5-2			1712-1							2-1 5-2	
	1413-2	J					M2-2	<u> </u>		IVI	<i>3-</i> 2	M2-2
•		M2-3					1112 2					1112 2
		1,12 3	M2-4		M2-4							<u> </u>
							M7					
			1	11	•						0	

RePublic_ZEB- webpage

http://www.republiczeb.org/

Home

About the project

News

Publications

Partners

Partner area

Contact us

Sign up to our newsletter

obrigada

laura.aelenei@lneg.pt

O trabalho do projeto SusCity é financiado pela FCT - Fundação para a Ciência e a Tecnologia sob o projecto do MITP-TB (Ref MITP-TB/C S/0026/2013).

